A Free-Space Diffraction BSDF (FSD-BSDF)

Team 1

Tan Chao Niklas Sanden

Team 2: MultiDiff

- View synthesis (video) from 1 image using diffusion models
 - Warp colour images based on predicted depth
 - Add structured noise when training
- -> more consistent videos

Structured Noise

Noise warped based on predicted depth

Reference image

Depth-based reference warp

Structured noise

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

A FREE-SPACE DIFFRACTION BSDF

SHLOMI STEINBERG RAVI RAMAMOORTHI BENEDIKT BITTERLI ARSHIYA MOLLAZAINALI EUGENE D'EON MATT PHARR

Why is wave optic model important in CG?

The spinning top in *Inception*

Virtual office designed by protagonists in Ready Player One

To create a realistic virtual world!

Wave optics in daily life Interference

Soap bubble

Diffraction

iPad's screen and the screen under a Microscope

Wave optics in Material Representation

Blue butterfly and the structure of its wings

Bluebird and the structure of its wings

Structural Colors

Credit to *deep look* and <u>(@rogeruzun)</u>

Wave optics in computer graphics

Spiderweb iridescence example

Xia, Mengqi, et al. "A wave optics based fiber scattering model." ACM Transactions on Graphics (TOG) 39.6 (2020): 1-16.

Models of Light

- Quantum optics
 - Fundamental model of the light
 - Explain the dual wave-particle nature of light
- Wave model
 - Simplified quantum optics
 - Explains diffraction, interference, and polarization

- Geometric optics
 - Most commonly used model in CG
 - Size of objects >> wavelength of light
 - Light is emitted, reflected, and transmitted

What is diffraction?

A simple mesh with a couple of openings cut out in the center

Light is an electromagnetic wave

Diffraction: wave deviates from the original straight line propagation when it encounters an obstacle.

What is diffraction?

What is diffraction?

- Light consists of electromagnetic waves
 - Optical and non-optical frequencies
- Diffracts bends around objects and geometry
- Happens with all objects and edges in the scene

Why?

- Wave-optical simulations
- Medical devices
- Simulation of EM radiation
 - IR, X-Ray, Cellular,
 WiFi, RADAR, GPS, etc.
- Acoustics

Why?

Compute the signal coverage of cellular in a city

Why?

SPACE DIFFRACTION BSDF

Previous Methods

In CG

- Precompute BSDFs for a particular aperture [Reflectance model for diffraction]
- Highly specific, doesn't generalize

Computational optics

- ➢ GTD/UTD (Geometric/uniform theory of diffraction)— non linear transport
 - Used in CG as well.
 - Mutually interfering rays
- Does not scale

Cuypers, Tom, et al. "Reflectance model for diffraction." *ACM Transactions* on *Graphics (TOG)* 31.5 (2012): 1-11.

Their method:

- Ray tracing only
- Arbitrary triangular meshes
 - Diffraction around all objects
- No pre-computations
- Accurate diffraction lobes

Babinet's Principle

 Babinet's Principle: Diffraction by geometry and its complement produce identical diffraction patterns.

identical diffraction patterns

Idea

- Ray trace
- When a ray falls upon geometry, use the geometry itself for diffraction
 - Babinet's principle: correct diffraction lobes

Primary formal contribution

- Closed-form Fraunhofer diffraction with arbitrary triangular mesh
- Arbitrary (smooth) wavefunctions

Enables the construction of free-space diffraction BSDFs

- From list of edges, we derive a Free-Space Diffraction BSDF
 - Uses closed-form expression for Frauhofer diffraction
 - Importance sampling strategy
 - Linear time construction and evaluation

Wavefunction and search region must be provided by the light transport framework

- Too small wrong results
- Too big expensive

Result:

Validation against numerically-integrated Fraunhofer diffraction patterns Result:

Simulating Signal Coverage

ray optics

-70db -50db -30db

Result:

Simulating Signal Coverage

wave optics

-70db -50db -30db

Summary and Limitations

- Designed to work with a wave-optical light transport framework
 - A Generalized Ray Formulation For Wave-Optics Rendering, 2023

- Towards Practical Physical-Optics Rendering, 2022
- A Generic Framework for Physical Light Transport, 2021

Classical frameworks lack the information needed to diffract light

Summary and Limitations

Summary of Methods

1.Fraunhofer Diffraction and BSDF Construction:

A closed-form solution for Fraunhofer diffraction is derived, dynamically

constructing BSDFs from triangular meshes.

2.Wave-Optical and Ray Tracing Integration:

The method integrates wave-optical effects into ray tracing using coherence-guided BSDF construction.

3.Efficient Sampling:

Importance sampling strategies are introduced to optimize computation in diffraction simulations.

Summary and Limitations

Limitations

1.Dependence on Acceleration Structures:

Triangle searches dominate computation time, limiting scalability.

2.Ad Hoc Search Regions:

Fixed search regions reduce accuracy in capturing diffraction effects precisely.

3.Bias in Energy Conservation:

Energy redistribution approximations may introduce small inaccuracies.

Future Directions

1.Optimization of Search and Sampling:

Improve efficiency in accessing triangles and sampling diffraction effects.

2.Wave-Optical Framework Integration:

Replace ad hoc regions with coherence-based limits for better accuracy.

3.Broader Applications:

Extend to acoustics and other wave phenomena simulations.

Quizs

